Skip to content

Sellar system

sellar_system

The second discipline of the Sellar problem in JAX.

Classes

JAXSellarSystem

JAXSellarSystem(
    n: int = 1,
    static_args: Mapping[str, Any] = READ_ONLY_EMPTY_DICT,
    differentiation_method: DifferentiationMethod = AUTO,
    differentiate_at_execution: bool = False,
)

Bases: BaseJAXSellar

The discipline to compute the objective and constraints in JAX.

Initialize the JAXDiscipline.

Parameters:

  • n (int, default: 1 ) –

    The size of the local design variables and coupling variables.

  • static_args (Mapping[str, Any], default: READ_ONLY_EMPTY_DICT ) –

    The names and values of the static arguments of the JAX function. These arguments are constant at discipline execution. The non-numeric arguments can also be included.

  • differentiation_method (DifferentiationMethod, default: AUTO ) –

    The method to compute the Jacobian.

  • differentiate_at_execution (bool, default: False ) –

    Whether to compute the Jacobian when executing the discipline.

Source code in src/gemseo_jax/problems/sellar/sellar_system.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def __init__(
    self,
    n: int = 1,
    static_args: Mapping[str, Any] = READ_ONLY_EMPTY_DICT,
    differentiation_method: BaseJAXSellar.DifferentiationMethod = BaseJAXSellar.DifferentiationMethod.AUTO,  # noqa: E501
    differentiate_at_execution: bool = False,
) -> None:
    """
    Args:
        n: The size of the local design variables and coupling variables.
    """  # noqa: D205, D212, D415
    super().__init__(
        n,
        static_args=static_args,
        differentiation_method=differentiation_method,
        differentiate_at_execution=differentiate_at_execution,
    )
    self.__n = n
Attributes
jax_out_func instance-attribute
jax_out_func: Callable[[DataType], DataType] = function

The JAX function to compute the outputs from the inputs.

Classes
DifferentiationMethod

Bases: StrEnum

The method to compute the Jacobian.

Functions
add_differentiated_inputs
add_differentiated_inputs(
    input_names: Iterable[str] = (),
) -> None

Add the inputs with respect to which to differentiate the outputs.

The inputs that do not represent continuous numbers are filtered out.

Parameters:

  • input_names (Iterable[str], default: () ) –

    The input variables with respect to which to differentiate the outputs. If empty, use all the inputs.

Raises:

  • ValueError

    When an input name is not the name of a discipline input.

Notes

The Jacobian is also filtered to view non-differentiated static.

Source code in src/gemseo_jax/jax_discipline.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def add_differentiated_inputs(
    self,
    input_names: Iterable[str] = (),
) -> None:
    """
    Notes:
        The Jacobian is also filtered to view non-differentiated static.
    """  # noqa: D205, D212, D415
    old_differentiated_inputs = self._differentiated_input_names.copy()
    super().add_differentiated_inputs(input_names=input_names)
    refilter = any(
        input_name not in old_differentiated_inputs
        for input_name in self._differentiated_input_names
    )
    if refilter:
        self._filter_jacobian()
add_differentiated_outputs
add_differentiated_outputs(
    output_names: Iterable[str] = (),
) -> None

Add the outputs to be differentiated.

The outputs that do not represent continuous numbers are filtered out.

Parameters:

  • output_names (Iterable[str], default: () ) –

    The outputs to be differentiated. If empty, use all the outputs.

Raises:

  • ValueError

    When an output name is not the name of a discipline output.

Notes

The Jacobian is also filtered to view non-differentiated static.

Source code in src/gemseo_jax/jax_discipline.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def add_differentiated_outputs(
    self,
    output_names: Iterable[str] = (),
) -> None:
    """
    Notes:
        The Jacobian is also filtered to view non-differentiated static.
    """  # noqa: D205, D212, D415
    old_differentiated_outputs = self._differentiated_output_names.copy()
    super().add_differentiated_outputs(output_names=output_names)
    refilter = any(
        output_name not in old_differentiated_outputs
        for output_name in self._differentiated_output_names
    )
    if refilter:
        self._filter_jacobian()
compile_jit
compile_jit(pre_run: bool = True) -> None

Apply jit compilation over function and jacobian.

Parameters:

  • pre_run (bool, default: True ) –

    Whether to call jitted callables once to trigger compilation and log times.

Source code in src/gemseo_jax/jax_discipline.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def compile_jit(
    self,
    pre_run: bool = True,
) -> None:
    """Apply jit compilation over function and jacobian.

    Args:
        pre_run: Whether to call jitted callables once to trigger compilation and
            log times.
    """
    self.jax_out_func = jit(self.jax_out_func)
    self.__jax_jac_func = jit(self.__jax_jac_func)
    if pre_run:
        self._jit_pre_run()